The purpose of this paper is to evaluate whether current monetary policy and inflation-targeting has been successful in decelerating and decreasing the volatility of inflation. A system dynamics model was built to test the hypotheses about cause-and-effect relationships, the presence of which in the economy is assumed by modern macroeconomic theory and which are necessary for the effectiveness of monetary
policy within the framework of inflation targeting. An essential task in the process of building the model was to assess whether the introduction of inflation targeting was the factor that contributed to the slowdown of inflation to the target levels, and if so, to what extent different channels contributed to disinflation. The actual dynamics of inflation expectations of households, the key rate of the NBU, and the general CPI in 2015-2022 were compared with the results of the model in order to validate the built model and formulate conclusions. The model contains 8 sectors, each corresponding to a specific component of the national or foreign economy. A characteristic feature of the model is that the main emphasis was placed on the reproduction of the structural elements of currency and interest channels, as well as the channel of inflationary expectations of the monetary transmission mechanism. The study tested three monetary policy regimes: inflation targeting, a fixed exchange rate, and a regime involving a combination of inflation targeting and a fixed exchange rate.

Based on the results of the correlation-regression analysis and the constructed system dynamics model, the recommendations to return to the regime of classical inflation targeting (without fixing the exchange rate) after the victory in the war are substantiated. In addition, it is necessary to develop the infrastructure and improve the efficiency of regulatory conditions for the stock market, the bond market, and the mortgage market in order to strengthen the monetary transmission mechanism, in particular, the interest rate channel and the price channel for other assets. Also, the analysis of the system dynamics model confirmed the assumption about the significance of the influence of economic agents' trust in the actions of the central bank on the effectiveness of monetary policy. Thus, building confidence in monetary policy should be one of the primary tasks of the National Bank of Ukraine.

Метою статті є оцінка ефективності сучасної монетарної політики та успішності запровадження інфляційного таргетування в Україні для сповільнення темпів інфляції. Для перевірки гіпотез про причинно-наслідкові зв’язки, присутність яких в економіці передбачає сучасна макроекономічна теорія та які є необхідними для дієвості монетарної політики в рамках таргетування інфляції, була побудована модель системної динаміки. Ключовим завданням у процесі побудови моделі була оцінка того, чи запровадження
інфляційного таргетування було тим фактором, що сприяв сповільненню інфляції до цільових рівнів у 2015-2021 рр., і якщо так, то якою мірою різні канали внесли внесок у дезінфляцію. Фактична динаміка інфляційних очікувань домогосподарств, ключової ставки НБУ та загального ІСЦ у 2015-2022 рр. були порівняні з результатами моделі з метою валідації побудованої моделі та формулювання висновків. Модель містить 8 секторів, кожен з яких відповідає певній складовій національної чи зовнішньої економіки. Характерною рисою моделі є те, що основний акцент був зроблений на відтворенні структурних елементів валютного та процентного каналів, а також каналу інфляційних очікувань монетарного трансмісійного механізму. У рамках дослідження було протестовано три режими монетарної політики: таргетування інфляції, фіксованого обмінного курсу та режим, який передбачає поєднання інфляційного таргетування та фіксованого обмінного курсу.

На основі результатів кореляційно-регресійного аналізу та побудованої моделі системної динаміки обґрунтовано рекомендації повернення до режиму класичного інфляційного таргетування (без фіксовання обмінного курсу) після Перемоги у війні з росією. Окрім цього, необхідним є розвиток інфраструктури та підвищення ефективності регуляторних умов для фондового ринку, ринку облігацій та іпотечного ринку, з метою посилення монетарного трансмісійного механізму, зокрема процентного каналу та каналу цін на інші активи. Також аналіз моделі системної динаміки підтвердив припущення про істотність впливу довіри економічних агентів до дій центрального банку на ефективність монетарної політики. Таким чином, формування довіри до монетарної політики має бути одним із першочергових завдань Національного банку України.

Keywords: monetary policy, inflation-targeting, transmission mechanism, system dynamics modelling, National bank, monetary instruments

Ключові слова: монетарна політика, таргетування інфляції, трансмісійний механізм, моделювання системної динаміки, Національний банк, монетарні інструменти
Problem statement. The National Bank of Ukraine has switched to inflation-targeting in 2015 with the hope that it would be beneficial for faster overcoming of the aftermath of the economic, banking, and currency crises. Since the beginning of the full-scale Russian invasion, the NBU has been constantly communicating its commitment to inflation-targeting combined with some extra measures needed to stabilise the foreign exchange market and banking system. At the same time, the successfulness of inflation-targeting depends greatly on the strength of the links between monetary policy instruments and the real economy. The importance of these links for an adequate macroeconomic environment constitutes the relevance of this research topic.

The purpose of the article is to evaluate whether current monetary policy and inflation-targeting has been more successful in decelerating and decreasing the volatility of inflation compared with fixed exchange rate.

The main material research. The general approach for modeling the causal relationships in a national economy follows the design of "a semi-structural, forward-looking New-Keynesian model of a small open economy" [2] that the NBU uses for medium-term forecasting of key macroeconomic variables. Also, the research of David Wheat [5] on modeling macroeconomics with system dynamics tools was a great source of inspiration for the development of this model. There are 8 sectors in the model. Each represents a part of a national or a foreign economy.

In Figure 1, the first three sectors are displayed. We start with the assumptions concerning domestic interest rates. It is assumed that inflation expectations are the same for all economic agents in an economy (which is an obvious simplification, but this is a simple model of a national economy) and for foreign investors too. The sum of the expected inflation and the required real interest rate is the required nominal interest rate in the economy. The normal real interest rate is assumed to be equal to 3% per year as the NBU estimates that the neutral real interest rate in a steady state for Ukraine is 3% [2]. The neutral rate is the normal rate because at such a level, the monetary conditions are neither tight nor accommodating [1, 3]. Additionally, it is assumed that the real interest rate changes only if a central bank changes its policy
rate. And the policy rate of a central bank is a goal for real interest rate in the economy.

Figure 1. Interest rate policy, GDP growth and domestic interest rates sectors

Source: developed by the author in Stella Architect

In the GDP growth sector, real monetary conditions (real interest rate) and real conditions of international trade (real exchange rate gap) define the rate of change in GDP instantaneously. GDP growth sensitivities to the mentioned factors are assumed to be equal -0.035 and -0.065, respectively [2].

The interest rate policy sector represents a decision rule of a central bank. Monetary policy sensitivity to the gap of GDP growth is assumed to be equal 0.4. The lower bound for this parameter is equal to 0, because usually, central banks are not willing to increase the interest rates to react to the positive gap of GDP growth as there are debates about whether the actual rate of GDP growth is higher or lower than the growth of the potential GDP. The upper bound for this parameter cannot be higher than the lower bound for monetary policy sensitivity to the inflation gap because price stability is the overriding goal of monetary policy. Monetary policy sensitivity to the inflation gap is assumed to be equal to 2 [2]. This parameter cannot be less than 1, because in emerging economies, the financial depth of the country is
low, and it requires quite significant changes in interest rates to affect the real production and inflation. Also, because of high volatility, various risk premiums, and high dependence of domestic businesses, particularly of banks, on loans in foreign currency, the transmission of the changes in the key policy rate into market interest rates could be incomplete, which will increase the need of higher sensitivity of monetary policy to the inflation gap. The upper bound is around 3 because too high sensitivity of monetary policy to the inflation gap in real world might significantly restrain economic development, which would lead to dissatisfaction of the population with the policy of a central bank, which will cause the change of management in the central bank and less sensitive monetary policy. Normal inflation for the period under consideration (2016-2022) is assumed to be equal 13% annually. This value is higher than the current medium-term inflation target because the targeted rate of inflation has been gradually decreased in 2016-2019.

![Figure 2. Domestic prices, foreign prices, trade competitiveness sectors](source: developed by the author in Stella Architect)

In the domestic prices sector (Figure 2) it is assumed that inflation sensitivity to the changes in the nominal exchange rate is -0.05 as in the paper on the quarterly projection model for Ukraine [2] a respective parameter in the core inflation specification is calibrated to be equal -0.05. Similarly, the inflation sensitivity to the
gap of GDP growth is equal to 0.18, while inflation sensitivity to the relative real exchange rate gap is assumed to be equal -0.06.

The most important component of the inflation formations sector (Figure 3) is the central bank credibility parameter. In the paper on the quarterly projection model for Ukraine [27], this parameter is assumed to be equal to 0.75. However, during the calibration, it was found that this value should be much lower, around 0.15. It makes more sense to assume that the central bank's credibility is closer to its lower bound as the central bank of Ukraine experienced a severe decrease in trust in 2014-2015 and there have been major changes in the regulations about the central bank and its mandate in Ukraine.

![Figure 3. Inflation expectations formation sector](image)

Figure 3. Inflation expectations formation sector

Source: developed by the author in Stella Architect

In the foreign exchange market (Figure 4) it is assumed that the nominal exchange rate sensitivity to the gap of nominal interest rate is around 0.25, because the effect of international flows of capital on the nominal exchange rate covers only
one segment of the foreign exchange market and we are interested in the dynamics of this specific segment.

In this model the nominal exchange rate can change either because of international flows of capital or because of foreign exchange interventions by the central bank. This is a simplification, because there are other factors affecting nominal exchange rate like the revenues of exporters and the need for foreign currency to pay for imported goods. Because of the assumption that there are only 2 countries in the world of this model, the stock of the nominal exchange rate can also be considered a nominal effective exchange rate (NEER). The nominal exchange rate adjustment time is assumed to be equal to 1 year because Ukraine has a shallow financial market. Normal fraction for coverage of exchange rate volatility with foreign exchange interventions equals to 0.15 [2].

![Diagram of foreign exchange market](image)

Figure 4. Foreign exchange market
Source: developed by the author in Stella Architect
Now that structure of the model is described, next step is to consider the dynamic hypothesis about the key structural relationships that drive the behaviour of our system. The most important feedback loops integrated in the model are summarised in the form of a causal loop diagram (Figure 5).

Self-fulfilling backward-looking expectations (R1). It is assumed that inflation expectations have persistent nature and are affected by the historical events which the population has seen. J. Sterman shows that expectations about prices tend to be primarily dependent on the past even when there is an abundance of complex methods for inflation forecasting [4]. At the same time, the actual price changes are heavily dependent on inflation expectations, because manufacturers account for expectations when they set their prices.

Imported goods get relatively cheaper (B1). Ukraine is a relatively small economy, but at the same time it is extensively involved in international trade (the ratio of exports and imports to GDP has rarely fallen below 80% over the last few decades). Due to that, the inflation in the main trading partners of Ukraine affects the dynamics of prices in Ukraine through its effects on the relative trade competitiveness of foreign and domestic manufacturers. For example, if for a long period of time inflation stays higher in Ukraine than in the main trading partners, prices of goods and services of foreign firms will become very attractive for households in Ukraine. They will buy more imported goods and services and the general price level in the domestic economy will move towards the world price level.
Cheap imports crowd out domestic production (B2). This feedback loop is like B1, but here the influence of trade competitiveness on GDP growth is also considered. If we take the previously mentioned example of high persistent inflation in the domestic market, then we can also add that the increase in the demand for imported goods and services will decrease the demand for domestic ones. Also, exporters would not be able to sell as much as before in the foreign markets, because their prices became relatively high. As a result, GDP in the domestic economy will decrease and it will lead to a reduction in the demand-driven pressure on inflation.

Secondly, we need to discuss the feedback processes that are added when a central bank is using inflation-targeting monetary policy regime.

Interest rate channel (B3). When the forecasted inflation is higher than the inflation target, a central bank must increase its key policy rate. Real interest rates in the economy will increase as well because the key policy rate represents the cost of short-term borrowing for commercial banks. As a result, it will become more costly for firms to borrow money. Thus, investments will fall, and GDP growth will slow.
down. Slower GDP growth means less competition for resources in the domestic economy and smaller final demand, which would lead to a deceleration of inflation.

Expectations channel (B4). One of the key characteristics of inflation-targeting is public communication of the inflation target. A central bank is trying to convince the population that its actions will lead to the stabilization of inflation around the targeted rate in the medium term (1-2 years). And if a central bank is acting according to its vows, then the expected inflation will approach the inflation target.

Reverse expectations channel (R2). Conversely, if the actual actions of a central bank contradict the expected actions, inflation expectations will destabilize.

Exchange rate channel. It is assumed that higher interest rates in the domestic economy attract foreign investors, which is why the nominal exchange rate appreciates. This has a direct effect on inflation because the prices for imported goods become relatively lower (B5). At the same time, the appreciation of national currency increases the demand for foreign goods and services, which limits GDP growth (B6) and increases the proportion of relatively cheap imports in consumption (B7).

The structure of the model was developed as it was already mentioned based on the forecasting model that in its turn had been developed relying on modern mainstream macroeconomic thought. Rational inflation expectations were added to the sector of inflation expectations to make the expectations channel of the monetary transmission mechanism more explicit compared to the econometrics model. Most of the values for constant parameters in the model are taken from the quarterly projection model for Ukraine [2]. The values for other constant parameters are based either on assumptions or on the hand calibration of the model to historical data on inflation, inflation expectations, and the policy rate in Ukraine.

Next step is the model’s sensitivity analysis, which is divided into 4 parts. The first three parts explore the sensitivity of key performance indicators to different values of individual parameters, and the parameters are separated into three groups because their involvement in the system behavior depends on the monetary policy regime that is used by a central bank. Also, policy sensitivity tests were conducted to
explore the model sensitivity to constant parameters under different monetary policy regimes.

First parameters that are influencing the system independently of the monetary policy regime are considered. This group consists of constant parameters that stay active under each of the scenarios described in this article. That is why they were tested under all three scenarios to investigate the possible presence of leverage points that are independent of the monetary policy. Parameters were changed one at a time while other parameters remained the same for each of the tests in this part of the sensitivity analysis discussion. Stella’s Model Analysis Tools were used with the following settings: Distribution – Uniform, Latin Hypercube sampling (Noise seed = 21), and 200 runs for each parameter under each scenario. The key results are presented in Table 1. The results indicate that the model is most sensitive to two variables: the adjustment time of inflation expectations and inflation sensitivity to the relative real exchange rate gap.

The model shows both high numerical and policy sensitivity to the time to adjust inflation expectations parameter. This makes sense: if it takes longer to adjust inflation expectations then an ability of an exogenous shock to push inflation expectations higher would be limited (the reinforcing loop of self-fulfilling backward-looking expectation is weakened) and vice versa. Also, the results indicate that under inflation-targeting the development of inflation and inflation expectations show enhanced oscillatory behaviour. This happens because the feedback loops that are added with inflation-targeting monetary policy regime force inflation to decelerate, while the actual monetary policy decisions are primarily dependent on the expected inflation which gets more volatile if there is a faster adjustment of the expectations. We could also see that under a combination of the monetary policy regimes (inflation-targeting and fixed exchange rate combined) oscillatory behavior is dampened. The reason for that is the fact that the fixed exchange rate makes the exchange rate channel of the monetary transmission mechanism inactive, which is why monetary policy becomes less effective in the deceleration of inflation. At the same time, it makes the deceleration of inflation smoother. There is also quite
significant uncertainty about the real value of this parameter, which is why future research on this topic seems necessary.

Table 1. Summary of results of the sensitivity tests for the parameters that are influencing the system independently of the monetary policy regime

<table>
<thead>
<tr>
<th>Parameter [unit]</th>
<th>Range</th>
<th>Sensitivity</th>
<th>Uncertainty about the actual value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to perceive inflation [Year]</td>
<td>Min 0.042</td>
<td>Used in the model 0.083</td>
<td>Max 0.250</td>
</tr>
<tr>
<td>Time to adjust inflation expectations [Year]</td>
<td>1.000</td>
<td>2.000</td>
<td>4.000</td>
</tr>
<tr>
<td>GDP growth sensitivity to the relative gap of real exchange rate [(dmnl/Year)/(dmnl/Year)]</td>
<td>-0.400</td>
<td>-0.065</td>
<td>-0.010</td>
</tr>
<tr>
<td>Inflation sensitivity to the gap of GDP growth [(dmnl/Year)/(dmnl/Year)]</td>
<td>0.040</td>
<td>0.180</td>
<td>0.360</td>
</tr>
<tr>
<td>Inflation sensitivity to the relative real exchange rate gap [dmnl/Year]</td>
<td>-0.200</td>
<td>-0.060</td>
<td>-0.010</td>
</tr>
<tr>
<td>Normal inflation [dmnl/Year]</td>
<td>0.010</td>
<td>0.130</td>
<td>0.250</td>
</tr>
<tr>
<td>Normal real interest rate [dmnl/Year]</td>
<td>0.015</td>
<td>0.030</td>
<td>0.060</td>
</tr>
<tr>
<td>Initial price level in domestic market [Units of national currency]</td>
<td>0.500</td>
<td>1.000</td>
<td>2.000</td>
</tr>
<tr>
<td>Initial price level in main trading partner [Units of foreign currency]</td>
<td>0.500</td>
<td>1.000</td>
<td>2.000</td>
</tr>
</tbody>
</table>

Source: calculated by the author in Stella Architect

The model shows both high numerical and policy sensitivity to the inflation sensitivity to the relative real exchange rate gap parameter. And similarly to the adjustment time of inflation expectations, under inflation-targeting monetary policy regime, the variation of this parameter affects the amplitude of oscillations of the key performance indicators. The reason for that is the dependency of the efficiency of the exchange rate channel of the monetary transmission mechanism on this parameter. A
relatively large negative value of inflation sensitivity to the relative real exchange rate gap strengthens one of the balancing loops in the exchange rate channel, which is why monetary policy decisions affect inflation and inflation expectations faster.

Next step is to consider parameters that are introduced with inflation-targeting regime and stay active even if exchange rate is fixed (2 policy settings). This group consists of constant parameters that stay active either under a pure inflation-targeting monetary policy regime or under a combination of inflation-targeting with the fixed exchange rate regime. Parameters were changed one at a time while other parameters remained the same for each of the tests in this part of the sensitivity analysis discussion. Stella’s Model Analysis Tools were used with the following settings: Distribution – Uniform, Latin Hypercube sampling (Noise seed = 21), and 200 runs for each parameter under each scenario. The key results are presented in Table 2.

Table 2. Summary of results of the sensitivity tests for the parameters that are introduced with inflation-targeting regime and stay active even if exchange rate is fixed

<table>
<thead>
<tr>
<th>Parameter [unit]</th>
<th>Range</th>
<th>Sensitivity</th>
<th>Uncertainty about the actual value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Used in the model</td>
<td>Max</td>
</tr>
<tr>
<td>Real interest rate adjustment time [Year]</td>
<td>0.250</td>
<td>0.500</td>
<td>1.500</td>
</tr>
<tr>
<td>Monetary policy sensitivity to the gap of GDP growth [(dmnl/Year)/(dmnl/Year)]</td>
<td>0.000</td>
<td>0.400</td>
<td>1.000</td>
</tr>
<tr>
<td>Monetary policy sensitivity to the inflation gap [(dmnl/Year)/(dmnl/Year)]</td>
<td>1.000</td>
<td>2.000</td>
<td>4.000</td>
</tr>
<tr>
<td>GDP growth sensitivity to the gap of real interest rate [(dmnl/Year)/(dmnl/Year)]</td>
<td>-0.400</td>
<td>-0.035</td>
<td>0.010</td>
</tr>
<tr>
<td>Central bank credibility [dmnl]</td>
<td>0.000</td>
<td>0.150</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Source: calculated by the author in Stella Architect
Also, here we extend the number of key policy indicators and include the nominal key policy rate because this rate is the most important instrument of a central bank that is targeting inflation. The model shows relatively high numerical sensitivity to the monetary policy sensitivity to the inflation gap parameter under pure inflation targeting monetary policy regime. This is expected because higher monetary policy sensitivity to the inflation gap strengthens the link from the expected inflation to the real key policy rate, which is why the nominal key policy rate takes higher values faster and its effects on inflation appear faster as well.

Under the combination of inflation-targeting and fixed exchange rate high numerical sensitivity is observable only for the nominal key policy rate, while inflation and inflation expectations do not change that much as under pure inflation-targeting. This is due to the inactivity of the exchange rate channel of the monetary transmission mechanism when the exchange rate is kept constant. In other words, even though the nominal exchange rate has already increased a lot, it does not affect inflation and inflation expectations that much. As a result, the deceleration of inflation is caused primarily by the loops that are not dependent on monetary policy.

The model shows relatively high numerical sensitivity to the central bank credibility parameter under pure inflation-targeting. This happens because increased central bank credibility makes both B4 and R2 feedback loops stronger. On the one hand, higher central bank credibility makes it easier to decrease inflation expectations as the population has trust in its central bank. On the other hand, inflation expectations become much more sensitive to monetary policy decisions and react faster to the discrepancies between the expected key policy rate and the actual one.

Finally parameters that become inactive if exchange rate is fixed were considered. This group consists of constant parameters that stay active only if the nominal exchange rate is allowed by a central bank to float. Parameters were changed one at a time while other parameters remained the same for each of the tests in this part of the sensitivity analysis discussion. Stella’s Model Analysis Tools were used with the following settings: Distribution – Uniform, Latin Hypercube sampling
(Noise seed = 21), and 200 runs for each parameter under only one scenario – inflation-targeting. The key results are presented in Table 3.

The results indicate that the model is highly numerically and to some extent behaviorally sensitive to the parameter of inflation sensitivity to the changes in the nominal exchange rate. This is a result of high uncertainty about the actual value of this parameter, especially during times of high macroeconomic volatility. As we can see from the sensitivity test, if this parameter is set to be equal to a relatively large negative value (-0.7), the inflation rate decreases fast after the end of the exogenous shocks because of a sharp increase of the nominal exchange rates that attract foreign capital in Ukraine, which is why the national currency appreciates. As a result, imported inflation slow down, and headline inflation slow down as well.

Table 3. Summary of results of the sensitivity tests for the parameters that become inactive if the nominal exchange rate is fixed

<table>
<thead>
<tr>
<th>Parameter [Unit]</th>
<th>Range</th>
<th>Sensitivity</th>
<th>Uncertainty about the actual value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal exchange rate adjustment time [Year]</td>
<td>Min 0.500 Used in the model 1.000 Max 1.500</td>
<td>Numerical</td>
<td>Average</td>
</tr>
<tr>
<td>Elasticity of nominal exchange rate to the gap of nominal interest rate [dmnl]</td>
<td>0.125 0.250 0.500</td>
<td>Numerical</td>
<td>High</td>
</tr>
<tr>
<td>Inflation sensitivity to the changes of the nominal exchange rate [(dmnl/Year)/(dmnl/Year)]</td>
<td>-0.700 -0.050 -0.010</td>
<td>High Numerical / Behavioral High</td>
<td></td>
</tr>
<tr>
<td>Normal fraction for coverage of exchange rate volatility with foreign exchange interventions [dmnl]</td>
<td>0.075 0.150 0.300</td>
<td>Numerical</td>
<td>Low</td>
</tr>
</tbody>
</table>

Source: calculated by the author in Stella Architect

Next step is to evaluate macroeconomic resilience under three monetary policy regimes: inflation-targeting, fixed exchange rate, a combination of inflation-targeting and fixed exchange rate.

The first simulation scenario represents the actual monetary policy used in 2015-2021. The graphs in Figure 6. show the comparison of the historical behaviour
of the key performance indicators with the results of the simulation. Accounting for the role of exogenous inflationary shock in 2015, the model was able to reproduce the historical trends relatively well. But the simulated development of the nominal key policy rate shows higher ranges of fluctuations. It can be explained by the fact that, in reality, the central bank of Ukraine is not willing to increase its key policy rate above the range of 25-30% as the productive influence of such changes on inflation degrades on such levels of interest rates, which is why the central bank is forced to use its other instruments to affect prices.

In the first year of the simulation, we observe that in addition to exogenous shocks inflation also accelerates due to self-fulfilling backward-looking inflation expectations, while it takes a long time for inflation to affect trade competitiveness and international trade, which is why B1 and B2 have small effects amid the crisis. At the same time, the nominal key policy rate is growing sharply as the central bank is trying to counteract the reinforcing loop of inflation expectations and deal with the aftermath of the exogenous inflationary shock for inflation expectations.

![Figure 6. Behaviour of key performance indicators under inflation-targeting](image)

Source: developed by the author in Stella Architect
After the exogenous shock is gone, the monetary transmission channels and the major balancing loops that are independent of the monetary policy start to decelerate inflation. But their effects have unequal delays, which is why in 2017 inflation is already lower than the initial normal level (13%) and still decelerating. It reaches the range of 5-6% in 2019 and starts to accelerate again as the monetary policy becomes expansionary. It should be noted that in the model the monetary policy has two goals: 1) stabilisation of inflation around its normal level (i.e., inflation target); 2) promotion of sustained economic growth when this goal does not contradict the first one. The same is observed in the real world. That is why, after inflation has been significantly decelerated, the second goal starts to grow in importance for the central bank and the nominal key policy rate becomes even lower to stimulate the growth of GDP. As a result, by the end of the simulation inflation is around 10% per year and is close to its anchor i.e., inflation expectations (around 9%).

The role of the expectations channel is ambiguous. People judge the actions of the central bank by looking at the current inflation rate, while the central bank does not care and should not care that much about the currently perceived inflation rate which represents the past events, but about the future inflation as its policy is always future-oriented. In the model, this difference in anchors is captured by assuming that the central bank sets its key policy rate by looking at the inflation expectations which is a dynamic anchor for actual inflation, while the population judges the appropriateness of the nominal key policy rate by looking at the perceived inflation. As a result, during the simulation, the perceived (by the population) difference between the required key policy rate and the actual one (monetary policy gap) is very high in 2015: the central bank increases its key policy rate after it observes that inflation expectations get out of control, but such actions are viewed by the population as too weak and too delayed. On the other hand, in 2016-2020 the monetary policy is perceived to be too contractionary, which is why the future-oriented component of inflation expectations falls significantly.

Secondly, fixed exchange rate monetary policy regime scenario was simulated. If we consider the hypothetical situation in which in 2015 the central bank of Ukraine
decided to adhere to its conventional policy of the fixed exchange rate, the development of key performance indicators would be different (Figure 7), though not too problematic. The graph of the key policy rate is not shown here as under the policy of fixed exchange rate a central bank is not trying to affect the interest rates in the economy, which is why the key policy rate becomes useless. It should also be mentioned that the key advantage of the fixed exchange rate monetary policy regime is the relative security it provides for the economic agents who hold assets nominated in the national currency. This is especially true during times of significant macroeconomic instability when there is a great risk of capital outflow from the country.

![Figure 7. Behaviour of the key performance indicators under fixed exchange rate monetary policy regime](image)

Source: developed by the author in Stella Architect

As can be seen, inflation and inflation expectations still converge to normal levels relatively fast. Even though all feedback loops that are added by inflation-targeting are turned off in this scenario, the influence of the accumulated over the crisis period gap of trade competitiveness forces the growth rate of domestic prices to slow down (B1 and B2 have a significant influence). Such results suggest that even though the chosen monetary policy regime was relatively efficient in the short and medium term, in the long-run active monetary policy has a relatively small effect on the overall price level. This is consistent with New Keynesian thought in macroeconomics.

Final step is to explore scenario of a combination of inflation-targeting and fixed exchange rate. This is an especially important scenario as currently (2023)
NBU operates in a monetary policy setting that corresponds to this scenario. As it can be seen, the deceleration of inflation and the decrease of inflation expectations happen a little slower than under pure inflation-targeting. The reason for this is that the fixed exchange rate makes exchange rate channel (B5, B6, B7) of the monetary transmission mechanism inactive which is why the increased inflow of foreign capital into the domestic economy that follows the increase of the interest rates in the economy is not affecting the nominal exchange rate and does not help to slow down inflation in short and medium-term.

Interestingly, the key policy rate does not decrease as much by the end of the simulation as it did under pure inflation-targeting. This happens because due to the inactivity of the exchange rate channel the trade competitiveness of domestic manufacturers in the international market has not been worsened additionally to the effects of the exogenous shocks (inactive B6), which is why the GDP growth has been higher. Higher GDP growth prevented the central bank from further decreasing its key policy rate when expected inflation reached its normal range. Such results reveal a peculiar advantage of a combination of the fixed exchange rate with inflation-targeting: if a central bank of a small open economy is not willing to sacrifice economic growth for faster deceleration of inflation, it might use the fixation of the nominal exchange rate to “steal” some economic growth from the main trading partners by making the domestic manufacturers relatively more competitive in the international market.
Figure 8. Behaviour of key performance indicators under inflation-targeting with fixed exchange rate

Source: developed by the author in Stella Architect

Also, the results of the sensitivity analysis indicate that there is significant numerical sensitivity of the key performance indicators to the changes in inflation sensitivity to the relative real exchange rate gap under all three settings of the monetary policy. This parameter represents the degree of involvement of an economy in international trade and defines the speed of influence of foreign prices on domestic ones. Essentially, during the simulations, a high absolute value of this parameter helps inflation rates in domestic and foreign economies to converge to their normal value faster. That is why, even if there is no central bank in an economy, inflation could still be not very volatile if there are no barriers to international trade.

Conclusions. Model analysis revealed that under classical inflation-targeting (no fixed exchange rate) inflation and inflation expectation decrease the fastest. At the same time, the effect of monetary policy of any type on inflation deceleration has been found to be relatively insignificant in the medium- and long-term as it is the competition in the international trade that forces the prices in different economies to converge in the model. On the one hand, this conclusion stresses the importance of
liberalization of international flows of goods, services, labor, and capital. On the other, it shows that model leaves outside of its boundary significant factors that should be accounted for to make a more comprehensive policy recommendation. In particular, the model does not consider technology and labor productivity differences between trading partners, and the positive structural changes in an economy that are triggered by a more transparent monetary policy (savings in the national currency become more popular, financial market develops faster due to a more predictable interest rate policy). Thus, further research aimed at the incorporation of these factors into the model seems necessary.

The main outcome recommendation is to return to the classical inflation-targeting without a fixed foreign exchange rate as soon as Ukraine wins the war. Also, it is crucial to develop the infrastructure and improve the regulatory conditions for the stock, bond, and mortgage markets to strengthen the monetary transmission mechanism.

Literature

References

Стаття надійшла до редакції 07.11.2023 р.